无刷电机的工作原理与扭矩

 时间:2023-09-09 00:47:07      开云作者: 开云科技

  大家对电机的认识可能就是高中课本里的交变电流章节的例子,电刷+外磁场+通电线圈。这是最经典的有刷电机。但是今天咱们谈论的是另一种更高效、性能更好的电机——无刷电机。

  如图是无刷电机的等效模型。内外两个灰色的轮子一个是定子,一个是转子(具体哪个是定子哪个是转子根据电机类型不一样)。此时转子和定子是完全重合在一起的,没有扭矩的存在。

  咱们定性地看,当外部的定子磁场扭转一个角度时,内部的转子会跟着旋转。这样一个时间段就存在扭矩了。

  所有的电机扭矩的大小正比于内外两个磁场的叉乘,即图中围出的平行四边形的面积。可见两个磁场重合时,叉乘为0,扭矩也为0,和之前的直观认知相符合。显然,当两个磁场呈90度时,平行四边形面积最大,此时的扭矩也最大。

  实际的无刷直流电机(BLDC)或永磁同步电机(PMSM)通常用三相****交流绕组线圈充当定子,永磁体作为转子。我们大家都希望通过电路控制定子绕组的输出,使之能够能产生一个大小尽可能恒定的旋转磁场,让转子和定子的扭矩达到最大值。

  FOC(Field-Oriented Control),即磁场定向控制,也称矢量变频,是近几年较为主流的高效控制无刷直流电机(BLDC)和永磁同步电机(PMSM)的选择。

  要得到一个恒定大小的旋转磁场很容易。当今主流的BLDC和PMSM电机定子均采用的是三相绕组,即各个绕组上的交流信号就是相位互差120°的信号。根据三相电机的结构,我们大家可以将一个恒定大小的旋转电压矢量分解到相位互差120°的方向上。如下图

  从上图能够正常的看到,只要控制电机的三个绕组产生相位互差120°的大小跟着时间按正弦规律变化的3个分矢量,就能够获得我们想要的旋转磁场

  然而,在实际的电机控制中,由于齿槽效应、磁通畸变等因素,电机的转矩会产生大量的波动,要一直地对控制信号做出修正。但是当电机转速较高时,电流环控制器必须跟踪频率逐步的提升的弦波信号,而且还要克服振幅和频率逐步的提升的电机反电动势。在这样的情况下,想要直接通过维持三路正弦信号得到旋转平滑、大小稳定并且从始至终保持和转子磁场方向垂直的磁场难以实现。

  我们重新再回到一开始的磁场叉乘。我们得知电机的转矩只与 平行于内磁场方向(称d轴)的磁场分量 和 垂直于内磁场方向的分量(称q轴)有关(如下图)。

  现在对于电机扭矩大小的控制就变成了q轴和d轴大小乘积的控制。在电机中,d轴上内磁场的大小是永磁铁产生的,是恒定的;我们对外磁场的控制实质上变成了q轴上的分量大小控制+外磁场的角度。

  我们能够正常的使用编码器测量转子的内磁场角度,然后根据内磁场的角度用电机绕组产生对应的外磁场。

  如上图所示,如果转子的电角度在θ1,则我们要在θ1处产生d、q轴大小的外磁场。如果转子的电角度在θ2,则我们要在θ2处产生d、q轴大小的外磁场。

  我们把角度θ1的情况单独提出来,把它移到原点去,然后把x、y轴重命名为α,β。根据空间矢量的关系,我们大家可以把q、d轴的大小分解到α,β轴上。这样的一个过程是所谓的“反帕克(Park)变换”。

  其实得到的结果很简单,它就是用了互差90°的正弦信号得到了大小恒定的旋转磁场。

  可以大概理解为在PWM输出的基础上增加若干花里胡哨的风骚处理( ̄▽ ̄)~*)

  绕了这么多弯弯,我们终于让电机转起来了。大家看到这个地方可能会说:“这是在折腾啥?(╬ ̄皿 ̄)不还是最后转成三个相差120°的正弦信号了吗?”

  我们先测量电机的3相电流。电机的信号如下图所示(把相差120°的电信号看成同一个旋转向量在三个相差120°坐标轴上的投影)

  根据我们之前的理论,我们应该的是两个互差90°的磁场。这里咱们又使用一个变换,把三个分磁场变换成α、β方向上的两个分磁场。这个叫做“克拉克(Clarke)变换”。

  再把α,β轴上的值映射到旋转的q、d轴上,得到此时电机实际的d值和p值。这是之前反Park变换的逆过程,“帕克Park变换”

  我们把测量到的d、q轴值与我们设定的值做对比,通过PI算法消除误差,再重新通过之前的流程输入到SVPWM中,这就完成了一个闭环控制,可以对定子磁场的做动态修正了。因为控制d、q是在控制电流值,所以这个环路叫做电流环。

  设置d0、q0值(目标值),经过反Park变换得到Iα和Iβ,输入给SVPWM执行

  测量q、d轴的值:测量电机的相电流(测量两相,通过Ia+Ib+Ic=0得到第三相),然后通过Clarke变换得到Iα和Iβ,然后通过park变换得到q、d轴的值。

  把测量到的d、q轴值与我们设定的d0、q0做对比,进行PID处理。(目标是让测量值与我们的设定值相同)

  调整d、q值输出,回到1.除了电流环之外,由于d、q是直流信号, 我们通过d、q也可以更轻松地控制电机的转速和旋转位置。比如设定电机转速为1000Rpmin,编码器测得当前转速为500,同样用PID算法增大q值就可以加大扭矩,让电机的速度加快了。这个环路叫速度环,即在电流环的外面加一层,改变q、d设定值来改变速度。当然我们也能加上位置环,通过对速度的积分能够获得电机的位置,计算位置误差进行PID调整。看ヾ(✿゚▽゚)ノ,我们把对三相交流正弦信号的控制转换成了对直流信号d,p的控制,这样优势就出来了,很nice~

  除了FOC之外,还有别的控制电机的方法,比如梯形波式控制、弦波控制等。详细的介绍可以借鉴这篇文章

  简单概括,弦波式换相能让电机在低速下运转平稳,但在高速运转下效率却大幅度的降低;而梯形波式换相在电机高速运转下工作比较正常,但在电机低速运转下,会产生力矩的波动。因此,矢量控制是对无刷电机的最佳控制方式~

  调了一天多的无刷电机,用的无刷电调,其实本来应该是用32做的,但是不知道原理, 于是用了比较熟悉的51单片剂一下来进行调试 一下,查询的资料,还是蛮简单的,但是真实的操作并没那么容易, 在网上查也没有能用的程序,尤其是51,因为基本用无刷的都是无人机 四六轴。所以今天贴上我的程序,分享给大家,希望能对各位减少时间学习,快速上手,本程序实现的功能是在第一次给无刷电机上电后,首先拉高油门,然后降低油门,最后满开油门,注意,,,,注意,,,,注意,一定别用带螺旋桨的无刷电机来实验,危险,开机后会全速运行,我开全速是为了用涵道,所以全速,, 废线单片机源程序如下: /**********************

  初步调试成果和学习经历 /

  无刷直流电机的分类能够准确的通过外形、电源信号和驱动方式来进行分类。不一样的无刷电机有不同的优点,因此可用于不同的产品使用场景。在这里,无刷电机的工程师将详细的介绍当今使用的无刷直流电机类型。同时根据扭矩、速度和效率等参数探讨每种类型的优缺点。 不一样的 BLDC 电机用于不同的环境,例如工业机器、电气和电子设备、车辆和机器人设备。 无刷直流电机的类型可分为以下几类: 转子类型分类 转轮内无刷直流电机(也称为内转子) 外转子直流无刷电机(又称外转子) 有无霍尔传感器的分类 有感无刷直流电机 无传感器无刷直流电机 按照相极分类 单相无刷直流电机 两相无刷直流电机 三相无刷直流电机 信号驱动的分类 正弦波驱动无刷直流电机 方波驱动无

  的分类 /

  0 引言 伴随着城市化进程,我们正常的生活的交通距离逐步扩大,代替燃油汽车和自行车的电动车的普及大幅度的提高了电力资源的利用效率,促进了国民经济的健康发展。电瓶车以电力作动力,骑行中不产生污染,无损于空气质量。从改善人们的出行方式、保护自然环境和经济条件许可情况等因素综合来看,电瓶车目前乃至今后都有着广阔的发展空间。电瓶车所用直流电机分为有刷电机和无刷电机两种。其中有刷电机控制较简单。但其易磨损的电刷带来维修保养工作量相对较大、常规使用的寿命相对较短等缺点。而直流无刷电机本身没有易磨损部件,电机寿命长,维修保养工作量小。但直流无刷电机采用电子换向原理工作,其控制过程比有刷电机复杂得多,因此对控制器质量的要求也高得多。

  控制器检测设计 /

  随着对机床产能、精度和动态性能要求的增加,直接驱动技术已慢慢的变多地被采用以满足以上多种需求。特别是直接驱动力矩电机,能够为机床的性能提高带来重大的改变。直驱力矩电机的应用,还具有降低客户的综合使用成本,简化机器的设计及减少维修维护等优点。 力矩电机被设计成直接驱动连接方式,即消除了齿轮箱、蜗轮蜗杆、同步带等物理运动装置,实现了机械负载与电机转子的直接连接。这样的连接方式可提供高动态性能,消除了传动的间隙与延迟,提供机床加工需要的极高刚性。 美国科尔摩根(Kollmorgen)于二十世纪五十年代,与麻省理工学院合作开发出了世界上第一台直驱力矩电机,最早应用于惯性制导转台上。此后的60多年其将所拥有

  无刷电机是指无电刷和机械换向器的电机。 我们大家都知道,一般的有刷电机的定子是永磁体,转子是电磁铁。转子转动时,通过电刷来自动切换转子电磁铁的中的电流方向,使得转子始终受到转动力矩的作用,得以旋转起来。 而无刷电机,转子是永磁体,定子是电磁铁,使用电子换向器器来切换电磁铁中的电流方法。由于它没有机械式的电刷,所以称为无刷电机。 1)无刷电机的结构 先介绍几个概念,无刷电机的槽数和级数,槽数N指的是定子上的电磁铁极数量,极数P指的是转子上磁极的数量。 最简单的3N2P结构电机,就是定子上有三个线圈极、定子上有两个磁极的无刷电机。 3N2P型无刷电机的定子结构示意如下图: 定子有三组线圈:A、B、C,三个线圈的一端连接到

  的结构和驱动电路 /

  前言 轧机是轧钢厂的核心设备之一,其工作效率及设备的可靠性直接决定了企业的生产能力。轧机传动轴作为轧机的重要核心部件,其断裂或破坏等故障直接影响了生产的进行,造成的损失巨大。 随着轧制速度和产量的持续不断的增加,使得轧制设备与其工作载荷的矛盾日趋明显;同时,在轧钢生产的全部过程中,由于其特殊的工艺制度,如粗轧R1、R2为可逆式轧机,需要频繁的启动和制动,同时轧件的突然咬入和抛出等都会引起轧机负荷的突然变化,形成一定的破坏能力。国内诸多钢铁企业曾多次发生过轧机主传动系统万向接轴断裂等重大事故,严重影响了企业的正常生产。由于缺乏相应的监测手段,无法判断事故发生时主传动系统的基本状态,给事故原因的查找及控制带来困难,更谈不上

  在线监测系统的设计与实现 /

  无刷和有刷电机哪个好 无刷电机相比有刷电机有以下几个优点: 高效:由于无刷电机没有电刷,摩擦力和能量损耗较小,因此其转换能量的效率更加高,能更节能。 高转矩:无刷电机具有更高的转矩密度,也就是说在同样体积和重量下可提供更大的输出力。 可靠性高:由于没电刷,无刷电机的维护成本低,寿命长,抗干扰性强,可靠性更高。 低噪音:无刷电机由于没电刷产生的火花和摩擦声,因此噪音较低。 综合看来,无刷电机具有更高的效率、更大的输出力、更长的寿命和更低的噪音,因此在许多应用中都优于有刷电机。但是无刷电机的成本通常更高,并且控制复杂度也较高,因此在一些成本敏感的应用中,有刷电机仍然具有一定的市场和应用前景。

  德国ELMOS公司日前宣布推出基于E523.81的新一代三相直流无刷(BLDC)电机控制器芯片。该芯片集成了必要的智能化功能,无需编写任何应用软件,只需通过对芯片的参数进行配置来适应不一样的电机参数和性能需求,使用向导工具进行启动。该芯片通过正弦波控制,电机的运行非常安静,因此非常适合于车辆中对电机噪音要求严格的地方。下面就随汽车电子小编共同来了解一下相关联的内容吧。 ELMOS推出单芯片汽车级直流无刷电机驱动方案 该芯片采用5mm × 5mm的QFN封装,节省PCB空间设计,采用该芯片的控制器非常适合于紧凑型风扇、水泵、油泵等对板面积有较为严苛要求的领域。集成的驱动器提供高达500mA的工作电流,连接该控制器芯片的电机转速

  驱动方案 /

  有奖报名|TI MSPM0 在【电力输送和工厂自动化与控制系统】、【家用电器和电机控制】中的典型应用

  有奖直播报名|Keysight World Tech Day 2023分论坛——汽车无人驾驶与新能源

  抢先体验:TI MSPM0L1306 LaunchPad开发套件,赢三模无线键盘

  对于想要快速扩展边缘人工智能雄心的研发人员来说,硬件碎片化是一个早期障碍。TDK Qeexo 为工业、制造、嵌入式系统和移动电子设备等应用开发 ...

  Credo推出业界首款单片集成CMOS VCSEL驱动器的800G光DSP芯片

  针对AOC及短距(SR)光模块优化的新型Credo DSP,适用于下一代超大规模数据中心 AI应用加州圣何塞和中国深圳,2023年9月6日Credo Tec ...

  FP6150是输入可达 36V 的异步降压型稳压器。内置 120mΩ 内阻的高位 NMOS,具有非常出色 的负载和线路调节能力,可在宽输入电压范围内实 ...

  CH7511B设计EDP转LVDS资料pin to pin 替代CH7511B电路设计

  Chrontel的CH7511B是一种低成本、低功耗的半导体器件,它将嵌入式DisplayPort信号转换为LVDS(低压差分信号)。这款创新的DisplayPort接收 ...

  FP6151 是输入可达 36V 的异步降压型稳压器。内置 75mΩ 内阻的高位 NMOS,具有非常出色的负载和线路调节能力,可在宽输入电压范围内实现 ...

  嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云: